вівторок, 28 квітня 2020 р.

Розгалуження у алгоритмі

Для учнів 7 класу урок узагальнюючого повторення за темою "Розгалуження в алгоритмі".

Сьогодні на уроці повторимо:

  1. Поняття розгалуження.
  2. Запис структури розгалуження у вигляді блок-схем.
  3. Запис алгоритму розгалуження у вигляді послідовності команд виконавця у середовищі Scratch.
  4. Умовні оператори у середовищі Scratch.
Структура розгалуження є однією з  базових алгоритмічних структур. 
Алгоритмічна структура, що дає змогу виконавцеві алгоритму обрати сценарій подальших дій залежно від істиності певного висловлювання, називається розгалуженням

Розрізняють дві форми структури розгалуження: повну і неповну
Повна структура розгалуження
Повна структура розгалуження схожа на умовне висловлювання "Якщо - то - інакше"


У середовищі Scratch функцію умовного оператора з двома гілками виконує команда "якщо інакше". Блок-схема цього оператора на малюнку нижче.

Неповна структура розгалуження
Неповна структура розгалуження схожа на висловлювання "Якщо - то", у якому після "то" записують послідовність команд, які необхідно виконати, коли висловлювання, яке задане в умові, є істиним.


У середовищі Scratch функцію умовного оператора з однією гілкою виконує команда "якщо".


Блоки логічних операторів (умова) у Scratch мають форму витягнутого шестикутника і розміщені у категоріях Датчики та Оператори.



Найпростіші приклади використання структури розгалуження:
Неповна структура розгалуження.
1. Якщо мишку натиснуто?, то змінити колір олівця на 3, інакше - нічого не робити.
2. Автоматична перевірка правопису.
Якщо <Cлово підкреслене червоною  хвилястою лінією>, то знайти і обрати в контексному меню правильний варіант слова, інакше - нічого не робити.
Повна структура розгалуження.
1. Якщо  клавішу ↑ натиснуто, то  (умова істина) збільшити  розмір об'єкта на 50%, інакше (умова хибна) - зменшити розмір на 30%.
2. Якщо <горить зелене світло світлофора>, то переходити дорогу, інакше - чекати появи зеленого світла.

понеділок, 27 квітня 2020 р.

Мандри Україною

Сьогодні гуртківцям "Ми - українці" пропоную вирішити у мандри Україною, побачивши її з неба. Давайте разом відвідаємо свою країну: Шацькі озера, Полісся, Базальтові стовпи, Таврію, Олешківські піски. Це далеко не весь перелік чудес та красот нашої країни. 
Закохуйтеся у свою країну - Україну!

субота, 25 квітня 2020 р.

Логічні задачі на календар

Курс за вибором з математики 7 клас

Зручно в офісі чи вдома мати настінний календар. Календар - це звичний та необхідний для нас предмет. Кожен з нас легко може сказати який сьогодні день, місяць, рік. Але дванадцять місяців, які систематизовані певним чином,  цікаві не лише вченим, але й тим, хто просто любить математику.

То які ж особливості та закономірності існують в календарі.

Спочатку пропоную вам ознайомитись із видами календарів.



Цікаво буде познайомитись зі математичними закономірностями. 

Перша з них - це трикутники в календарі. Якщо сполучити три числа в календарі, кожне з яких більше за попереднє на 10, то отримаємо прямокутний рівнобедрений трикутник. Приклади таких трійок: 1, 11, 21; 2, 12, 22; 3, 13, 23 і т.д.




Наступна - це таємничі квадрати у календарі.  Досліджуючи квадрати у календарі розміром 2×2; 3×3; 4×4 встановили певні закономірності.

Квадрати 2×2.
Сума квадратів на одній діагоналі дорівнює сумі квадратів на іншій діагоналі будь-якого квадрата в календарі.




Квадрат 3×3.
Гра "Обчислення наосліп". Ви взагалі не дивитесь на календар та пропонуєте глядачам  обрати будь-який місяць в календарі та обвести в ньому квадрат 3×3. Потім назвати в цьому квадраті найменше число і вже за мить  Ви називаєте суму всіх дев'яти чисел цього квадрата. Глядачу пропонуєте перевірити результат за допомогою калькулятора. Секрет простий. Треба до названого числа додати число 8 та результат помножити на 9. 

Математичні задачі в календарі.
1. Чи може бути в одному місяці п'ять понеділків та п'ять четвергів.
2. Відомо, що 1 грудня припало на середу. Тоді на який день тижня припадає 1 січня?
3. У деякому місяці три суботи припали на парні числа. Яким днем тижня було число 28 цього місяця?
4. Чи може у лютому високосного року бути п'ять понеділків та п'ять вівторків?
Пропоную розв'язати задачі самостійно. Аналіз розв'язків задач проведемо на наступнмому занятті.

Математична гра

Курс за вибором для учнів 8, 9 класів


На попередньому занятті ми з вами вчилися розв'язувати задачі - стратегії, які є ігровими задачами. Нагадаю, що в таких задачах треба сформулювати виграшну стратегію одного із гравців та довести, що така стратегія веде до виграшу.

Вам була запропонована задача для самостійного розв'язання. Перевіримо, як ви справилися із її розв'язанням.
Умова задачі:
Є дві купки камінців: в одній - 30, у другій - 20. За хід дозволяється брати будь-яку кількість камінців, але тільки з однієї купки. Програє той, кому немає що брати. Хто забезпечить собі виграш?
Розв'язання
Виграє перший. Першим ходом він зрівнює кількість камінців у обох купках по 20 штук, після чого обирає стратегію симетричного ходу. А саме - бере таку ж кількість камінців, як і суперник, але з іншої купки.

Сьогодні на уроці продовжимо вивчати математичні ігри-стратегії та розглянемо метод  доповнення до числа
Хід заняття
Математична розминка
Завдання 1
Продовжіть послідовність на три букви: 1) П, В, С, Ч, ... . 2) С, Л, Б, К, ... . 3) О, Д, Т, Ч, ... .

Завдання 2
Розв'яжіть задачу, схожу на домашню.
Умова задачі
Двоє гравцій виймають по черзі кульки із двох яшиків. За один хід кожний гравець може взяти будь-яку кількість кульок, але лише з одного ящика. Виграє той, що бере останнім. Як має грати той гравець, що починає, щоб виграти, якщо в першому ящику 73 кулі, а в другому - 118 куль?


Засвоєння нового матеріалу
У багатьох ігрових задачах виграшна стратегія досягається за допомогою вдалого ходу-відповіді на будь-який хід суперника. Найбільш поширеними є симетричні та парні стратегії, а також стратегії, які будуються на основі аналізу ігрових позицій.
Сьогодні розглянемо стратегію - доповнення до числа. У такій стратегії доповнюється хід суперника до деякого фіксованого числа, при цьому кожним сумісним ходом (тобто хід першого та другого гравця) зменшується загальна кількість елементів на деяке постійне число. Це зводить гру до меншої кількості елементів. Зрозуміло, що стратегія гри залежить від загальної кількості елементів.

Приклад такої задачі (спробуйте розв'язати їх самостійно).
Двоє грають у гру. По черзі із купки з 26 камінців можна взяти будь-яку їх кількість від 1 до 5. Виграє той, хто візьме останній камінець. У кого виграшна стратегія і яка вона?

четвер, 23 квітня 2020 р.

Працюємо на множинах

Курс за вибором з математики для учнів 7 класу.

Розв'яжемо задачу


Із 120 відвідувачів курсів іноземних мов 44 особи вивчають англійську мову, 50 - німецьку, 49 - французьку. Відомо, що 13 - вивчають одночасно англійську та німецьку, 14 - англійську та французьку, 12 - німецьку та французьку. Усі ці мови вивчають 5 відвідувачів. Скільки осіб вивчають лише одну мову? Скільки відвідувачів не вивчають жодної з цих мов?


Розв'язання

Використовуючи діаграми Ейлера-Венна зобразимо групи осіб (множини), що вичають одну із мов у вигляді кола. Оскільки деякі відвідувачі вивчають одночасно по дві, чи три мови, то на діаграмі це відвідувачі, які належать одночасно до двох чи трьох множин. На зображенні - це перерізи множин. В центрі - це множина відвідувачів, які вивчають одночасно усі три мови (5 осіб). 13 осіб, які вивчають одночасно англійську та німецьку, включають і тих 5 осіб, які вивчають французьку.


Спочатку знайдемо, скільки осіб вивчає лише дві мови:
13-5 = 8 (осіб) - вивчають англійську та  німецьку мови;
12-5 = 7 (осіб) - вивчають німецьку та французьку мови;
14-5 = 9 (осіб) - вивчають французьку та англійську мови.

Знайдемо скільки осіб вивчають лише одну мову. 
Для англійської мови: всього 44 особи вичають англійську мову, з них 8 - вивчають ще й німецьку, 9 - французьку, а 5 - німецьку та французьку. 
Маємо:
44 - (8 + 5 + 9) = 44 - 22=22 (особи)  - вивчають лише англійську;
50 - (8 + 5 + 7) = 50 - 20 =30 (осіб) - вивчають лише німецьку;
49 - (9 + 5 + 7) = 49 - 21= 28 (осіб) - вичають лише французьку мову.
Розгляньте це на діаграмі. 


Щоб знайти скільки всього  осіб відвідує курси англійської, німецької та французької мови - додамо тих, хто вивчає лише одну мову: 22+30+28=80 (осіб). Далі тих, хто вивчає по дві мови: 8+7+9=24 (особи). Далі разом всіх, враховуючи тих 5, що вивчають усі три мови: 80+24+5=109 (осіб).

Висновок: не вивчають жодної з цих мов: 120-109=11 (осіб).

Відповідь: 22 - лише англійську, 30 - лише німецбку, 28 - лише французьку і 11 осіб не вивчають жодної з цих мов (тобто вивчають інші мови).

середа, 22 квітня 2020 р.

Елементи теорії множин

Курс за вибором для учнів 7 класу

Сьогодні на занятті повторимо поняття множини, операції, які можна виконувати над множинами та розв'яжемо деякі задачі.

Поняття множини належить до первісних понять математики, якому не дається означення. Але множину можна уявити як сукупність, зібрання деяких предметів, що об'єднані за довільною характеристичною ознакою.
Приклади множин: множина учнів класу; множина цифр десяткової нумерації {0 ,1, 2, 3, 4, 5, 6, 7, 8, 9}; множина натуральних чисел; множина цілих чисел; множина букв українського алфавіту; множина дерев, які ти знаєш; множина птахів; множина легкових автомобілів. Спробуй самостійно назвати ще декілька множин предметів.

Над множинами виконують такі дії (операції):
Переріз множин А і В - це множина, яка складається з усіх тих і лише тих елементів, які належать кожній із даних множин. Записують так: А∩В.
Об'єднання множин А і В - це  множина, яка складається з усіх елементів даних  множин, і лише з них. Записують так: А∪В.
Різницею множин А і В називають множину, яка складається з усіх тих і тільки тих елеметнів множини А, які не належать множині В. Записують так: А\В.
За допомогою діаграм Ейлера-Венна зручно показувати відношення між множинами.

Сьогодні 22 квітня - День Землі. 
Пропоную для знайомства інформацію.
Багатьом речам, які ми щоденно використовуємо і далі як непотріб викидаємо у смітник, можна надати друге життя.
Більшість з вас мабуть чули про основні принципи свідомого екологічного життя - Reuse, Recycle, Reduce. Тобто - зменшуй кількість відходів!!!
Один приклад: Якщо переробити алюмінієві пляшки з-під прохолоджувальних напоїв, які викидають жителі мегаполіса за рік, то можна сконструювати тридцять справжніх літаків.

Розв'яжіть екологічну задачу на множини.
В опитування про збір вторинної сировини взяло участь 85 сімей, з них 31 відповіли, що збирають макулатуру, 36 - пластик, 26 - металеві бляшанки. До того ж відомо, що серед тих, хто збирає макулатуру, 12 сімей ще й збирають пластик, а серед тих, хто збирає пластик, - 8 сімей збирають бляшанки, а серед тих, хто збирає бляшанки, - 10 сімей ще й збирають макулатуру. Чотири сім'ї збирало папір, пластик і металеві бляшанки. Скільки сімей з опитаних не збирали папір? Скільки не збирали пластик? Скільки не збирали металеві бляшанки? Скільки сімей збирали лише металеві бляшанки?
Використовуючи діаграми Ейлера-Венна, спробуй розв'язати подану задачу. 


понеділок, 20 квітня 2020 р.

Розв'язування задача на гру. Симетрія ходу

Курс за вибором для учнів 8, 9 класів
Методи розв'язування задач типу Стратегії. Ігри двох осіб. 

Сьогодні розглянемо ігрові задачі у яких виграшна стратегія досягається за допомогою вдалого ходу-відповіді на будь-який хід партнера. Наявність вдалого ходу може забезпечуватися симетрією.

Розглянемо приклад.


Двоє гравців по черзі виймають з двох відер яблука. За один хід кожен гравець може брати з будь-якого, але тільки одного, відра довільну кількість яблук від 1 до 9. Виграє той, хто забере останнє яблуко. 
Як має грати перший гравець, щоб виграти, якщо у першому відрі 42 яблука, а в другому 38 яблук?



Розв'язання
    Першому гравцю потрібно взяти з першого відра 4 яблука, тоді у обох відрах яблук стане порівну. Далі на кожен хід другого гравця першому гравцю треба брати стільки яблук, скільки взяв другий гравець. Такий хід називається симетричним. При такій грі перший гравець забере останнє яблуко.
Відповідь: Щоб виграти, першому гравцеві треба спочатку взяти 4 яблука з першого відра, а далі брати стільки яблук, скільки братиме інший гравець. Яблука треба брати з іншого відра, не з того, що брав суперник.

Спробуй розв'язати самостійно!
Задача 
Є дві купки камінців: в одній - 30, в другій - 20. За один хід можна брати будь-яку кількість камінців, але лише з однієї купки. Програє той, кому немає що брати. Хто забезпечить собі виграш?

Євген Сагайдачний

Гуртківці "Ми - українці" продовжують знайомитись із видатними українськими особистостями. 22 квітня 1886 року у місті Херсон народився український маляр, патріот, педагог Євген Якович Сагайдачний.

Вашій увазі - другий слайд учнівського проекту


Завдання учням:
Продовжуйте знайомство із відомими особистостями рідного краю. 

вівторок, 14 квітня 2020 р.

Принцип Діріхле і геометричні задачі

Розв'язуємо логічні задачі. Курс за вибором для учнів 7 класу.


Принцип✲ Діріхле виглядає так: Якщо у n клітинках розмістили n+1 кролів, то хоча б у одній з них сидить не менше двох кролів. Це найпоширеніше формулювання принципу Діріхле. Цей принцип сам німецький математик ХІХ ст. Петер Густав Лежен Діріхле  у своїх наукових дослідженнях формулював так:"Якщо в n шухлядах не менше ніж n+1 предметів, то, висуваючи ці шухляди, ми принаймі в одній з них виявимо  не менше ніж два предмети".
 З Вікіпедії: принцип Діріхле - це комбінаторне твердження. 
Можна цей принцип сформулювати так
Припустимо, що деяке число кроликів розсаджені в клітках. Якщо число кроликів більше ніж число кліток, то хоча б в одній з кліток буде більше ніж один кролик.

Приклади задач, для яких зручно використовувати цей принцип:
1) Шість школярів з'їли сім цукерок. Доведіть, що один з них з'їв не менше двох цукерок. 
2) У школі 752 учні. Доведіть, що хоча б троє з них народилися в один і той самий день.
3) У крамницю завезли 25 ящиків цукерок трьох сортів ( у кожному ящику - цукерки лише одного сорту). Доведіть, що серед них є хоча б 9 ящиків із цукерками одного сорту.


Розв'яжемо задачу: 
"На кожній клітинці дошки розміром 5×5 сидить жук. За командою жуки переповзають на сусідні клітинки (клітинки вважаються сусідніми, якщо вони мають спільну сторону). Доведіть, що після того як всі жуки переповзуть до сусідніх клітинок, то знайдеться клітинка, у якій сидітимуть два жуки". 


Доведення
Кількість клітинок і кількість жуків однакова, то принцип Діріхле застосовувати не можна. Пофарбуємо клітинки  і жуків, які в них сидять, за правилом шахової дошки. Тоді  дошка, розміром 5×5 матиме 25 клітинок, із них нехай 13 чорних, а 12 білих. Сусідні клітинки із чорними -це білі. Тобто. Жорні жуки переповзуть у білі клітинки, а білі - у чорні. Оскільки чорних жуків 13, а клітинок білих - 12. То за принципом Діріхле знайдеться біла клітинка, у якій сидітимуть два чорних жуки. Що й треба було довести.


Принцип Діріхле у геометричних задачах
Задача
Усередині рівностороннього трикутника зі стороною 1  розміщено 5 точок. Довести, що відстань між деякими двома менше 0,5.
Доведення
Проведемо у трикутнику середні лінії. Вони розіб'ють трикутник на чотири рівносторонні трикутники зі стороною 0,5. Назвемо їх "Клітками", а точки - "зайцями".  Тоді кліток 4, а зайців - 5 і у  будь-якому випадку в одній клітці опиниться два зайці (точки). Існує твердження про довжину відрізка, який розташований всередині трикутника: Довжина відрізка, розташованого усередині трикутника менша за довжину найбільшої його сторони. Тобто існують дві точки відстань між якими менша 0,5. Це відстань між точками, які лежать усередині одного маленького трикутника. Твердження доведено.

Завдання для самостійного розв'язання
Усередині квадрата зі стороною 10 см відмічено 101 точку (жодні три не лежать на одній прямій). Доведіть, що серед цих точок є три, які утворюють трикутник, площа якого не перевищує 1 см². 

✲ Принцип - це правило, закон, важливе вихідне положення.

Задачі на стратегії


Курс за вибором, 8 клас
У математиці іграми на стратегію вважають ігри, в яких беруть участь двоє гравців, ходи роблять по черзі, пропускати хід не можна. 
Завжди відомо, у чому полягає заключна виграшна позиція і виграє той з гравців, після чийого ходу ця позиція досягається.
Універсальним методом для пошуку виграшної стратегії є аналіз гри "з кінця".


Прилад
На столі маємо 23 цукерки. Кожен з двох гравців за один хід може взяти будь-яку кількість цукерок від 1 до 4. Виграє той, хто забере останню цукерку. У кого з гравців виграшна стратегія і в чому вона полягає?

Розв'язання
Нехай гравець, який бере цукерки першим - це перший гравець, а той, що бере цукерки другим - другий гравець. Якщо проаналізувати задачу з кінця, то виграє той, який залишить супернику п'ять цукерок в кінці. Тому що скільки б цукерок не взяв супротивник із тих, що залишились від 1 до 4, інший забере всі інші і переможе!
Чи можна, розпочавши гру першим,  робити відповідні ходи так, щоб в кінці залишити супернику п'ять цукерок.
Для цього першому гравцеві потрібно виходити на номери, які кратні числу п'ять, це і забезпечить йому перемогу. ТОЖ, якщо перший гравець візьме ТРИ цукерки, то  другому гравцеві залишиться 20 цукерок. Коли  другий гравець візьме від 1 до 4 цукерок, перший  у відповідь залишить 15 цукерок і т.д.

Відповідь: виграшна стратегія у першого гравця. Йому треба взяти спочатку 3 цукерки, а потім брати стільки цукерок, щоб кількість тих, що залишилась,  була кратною числу 5.

Задача для самостійного розв'язання:
У коробці лежать 60 сірників. За один хід можна взяти від 1 до 5 сірників. Програє той, хто не зможе зробити хід. Як грати, щоб виграти і хто з гравців, перший чи другий, має виграшну стратегію.

Графи в математиці

Курс за вибором, 9 клас
Граф - це сукупність об'єктів із  зв'язками між ними. У Вікіпедії наведено приклад: Будову Вікіпедії можна змоделювати за допомогою орієнтованого графу, в якому вершини - це статті, а дуги - посилання на інші статті. 
Геометрично граф можна зобразити як точки (вершини графа), що сполучені лініями (ребрами). 

Розгляньте запропоновані слайди та спробуйте розв'язати задачу.




понеділок, 13 квітня 2020 р.

Онлайн уроки з математики

До уваги учнів та батьків  учнів 5-11 класів.
З 6 квітня 2020 року розпочалися повноцінні онлайн уроки для школярів 5-11 класів завдяки проекту "Всеукраїнська школа онлайн".
Посилання на ресурс: https://uroky.com.ua/
На сайті  uroky.cоm.ua розміщені всі записи  трансляцій уроків, розклад уроків на тиждень з темами уроків.

неділя, 12 квітня 2020 р.

Відомі постаті України - Іван Труш

Сьогодні гуртківці "Ми - українці" розпочинають проект "Відомі постаті України".  Результатом роботи над проектом буде презентація, в якій учні розкажуть про видатних українців. 


Перший слайд "Іван Труш - маестро кольору"


У 2019 році Національний банк України видав пам'ятну монету "Іван Труш" номіналом 2 гривні.


Завдання для учнів.
Оберіть відомого діяча  освіти, науки, медицини, культури,  політики, спорту  та використовуючи презентації PowerPoint створіть слайд, на якому відобразіть,  у зручний вам спосіб, діяльність особи, яку Ви обрали.
Вам у допомогу видатні діячі:

вівторок, 7 квітня 2020 р.

Дистанційне навчання з математики

Сьогодні прийняла участь у вебінарі "Інтернет-середовище для професійного розвитку вчителів математики". 


четвер, 2 квітня 2020 р.

Проект "Всеукраїнська школа онлайн"

Шановні батьки!
6 квітня в Україні розпочнеться проект "Всеукраїнська школа онлайн", який розрахований на учнів 5-11 класів.
Уроки щоранку транслюватимуть українські телеканали. За кожним класом буде закріплений один чи два канали.
Стежте за новинами, заохочуйте дітей до навчання, навчайтесь разом з ними!!!