Курс за вибором, 8 клас
У математиці іграми на стратегію вважають ігри, в яких беруть участь двоє гравців, ходи роблять по черзі, пропускати хід не можна.
Завжди відомо, у чому полягає заключна виграшна позиція і виграє той з гравців, після чийого ходу ця позиція досягається.
Універсальним методом для пошуку виграшної стратегії є аналіз гри "з кінця".
Прилад
На столі маємо 23 цукерки. Кожен з двох гравців за один хід може взяти будь-яку кількість цукерок від 1 до 4. Виграє той, хто забере останню цукерку. У кого з гравців виграшна стратегія і в чому вона полягає?
Розв'язання
Нехай гравець, який бере цукерки першим - це перший гравець, а той, що бере цукерки другим - другий гравець. Якщо проаналізувати задачу з кінця, то виграє той, який залишить супернику п'ять цукерок в кінці. Тому що скільки б цукерок не взяв супротивник із тих, що залишились від 1 до 4, інший забере всі інші і переможе!
Чи можна, розпочавши гру першим, робити відповідні ходи так, щоб в кінці залишити супернику п'ять цукерок.
Для цього першому гравцеві потрібно виходити на номери, які кратні числу п'ять, це і забезпечить йому перемогу. ТОЖ, якщо перший гравець візьме ТРИ цукерки, то другому гравцеві залишиться 20 цукерок. Коли другий гравець візьме від 1 до 4 цукерок, перший у відповідь залишить 15 цукерок і т.д.
Відповідь: виграшна стратегія у першого гравця. Йому треба взяти спочатку 3 цукерки, а потім брати стільки цукерок, щоб кількість тих, що залишилась, була кратною числу 5.
Задача для самостійного розв'язання:
У коробці лежать 60 сірників. За один хід можна взяти від 1 до 5 сірників. Програє той, хто не зможе зробити хід. Як грати, щоб виграти і хто з гравців, перший чи другий, має виграшну стратегію.
Немає коментарів:
Дописати коментар